Category Archives: Science

Curvalicious

Let’s look at the super cool ISOCHRONOUS CURVE!

This video does a good job of demonstrating that the periodic motion of an object on a (frictionless) isochronous curve has a period that is independent of where the object starts on the curve. It’s a pretty cool little thing.

Edit: OH MY GOD, A WHOLE WEBSITE ABOUT CURVES AND SHAPES

(I’m going to link to one of the pages, ‘cause it looks like the majority of the site is in French, but some of it has been translated to English. I’ve clicked through a lot of the curves using the links at the bottom and I’ve only hit English pages, so if you want to look at some curves, that might be the best way to go (unless you know French)).

Advertisements

LAMINAR FLOW

This guy’s absolute adoration of laminar flow is so freaking awesome.

Is…is this how I am with Leibniz?

Absolute Unit(s)

This makes me abnormally excited. I don’t know what it is with me and the SI units, but I dig ‘em, man.

And let’s be honest: I searched “kilogram” and read every related bit of info that came up, ‘cause the kilogram is my bro.

WANNA LEARN ABOUT PUPILS?

Yeah you do.

Basically, pupil shape is at least somewhat tied to whether an animal is more of a (grazing) prey animal or more of a predator. The article talks a lot about goats and sheep, and goats and sheep are pretty cool, so if you’re not into pupils, maybe you’re into goats and sheep.

(Sorry, I haven’t slept in like three days)

Spaaaaaaace!

I love this guy’s video simulations of space stuff.

I also love the disclaimer “Saturns rotation is extra impossible, but I had to prevent the rings from colliding.”

Don’t we all, yeti dynamics? Don’t we all?

*screeches in metric*

So y’all know I love the SI units, right? Hell, the “kilogram” tag on this blog is used frequently enough that it shows up in the “Tags” list on my front page.

Well, another closely-related thing I love are the SI prefixes. These are things like kilo or nano or yocto (which got its own blog a while back) that precede a unit and indicate either a multiple (like “kilo” suggests a thousand times something) or a fraction (like “milli” suggests a millionth of something) of the unit. Kilogram, nanosecond, millimeter, etc.

That kinda stuff.

Well, I guess four new prefixes have been proposed for the next levels of super big and super small: ronna and ronto for 1027 and 10-27 respectively, and quecca and quento for 1030 and 10-30, respectively. If they’re approved, they’re set to be officially put into place in 2022, making them the first prefixes approved since 1991.

And that is way too cool.

(I love the prefixes and I’m not sorry.)

 

TIL: The Planck Constant can be hilarious

Alternate title: GOD I’M OBNOXIOUS

Hokay. So Nate and I were playing Jeopardy this evening and some question* came up that made me think of the kilogram. This got me ranting and raving about said kilogram, as I am wont to do, so I looked it up on my phone because I knew that there have been recent attempts to redefine the kilogram based on a physical constant and I wanted to see exactly what that redefinition would be.

This eventually led to looking up the Planck constant, which led to viewing this equation:

10-17-2018

Of course it’s the mobile version of Wiki so it scrolls right in order for you to view the rest of the equation, but I initially didn’t think of that and I thought it was beyond hilarious that the Planck constant equaled 4.1. 4.1 what? Who the hell knows, that’s why it was funny.

Anyway.

*I can’t recall the specifics of the question, because like any well-adjusted happy person, I gloss over large amounts of my existence so that it’ll feel like I reach death faster.

CC

Remember that bomb blast simulation I mentioned a few days ago? They have an interactive “how will climate change affect you?” map as well.

 

Scary stuff.

Solar FAIL!

Huh. Interesting.

Are you Koppen with your climate?

So this is a cool little website. It lets you type in a city and highlights places around the world that have similar climates to that city.

Here’s Calgary, with its Dfb Koppen climate (continental climate, no dry season, warm summer)

11-10-2017-a

Moscow, with its Csb Koppen (middle latitude climate, dry season in a warm summer)

11-10-2017-b

Vancouver, with its Cfb Koppen (middle latitude climate, hell on earth no dry season, warm summer)

11-10-2017-c

And Tucson, with its BSh Koppen (dry and hot semi-arid climate)

11-10-2017-d

Nice!

 

ZOOM

Have you ever seen a canopy like this?

09-13-2017

(Picture from here)

What’s going on with those gaps between the leaves/branches? Turns out there’s this thing called “crown shyness,” a phenomenon observed in some species of trees. The phenomenon occurs when different trees’ crowns do not touch each other, leaving these funky channels of gaps between the crowns.

No one really knows what causes this crown shyness. One theory is that the behavior is adaptive, helping to prevent the spread of bugs/larvae that eat leaves. Another theory is that the behavior develops due to the fact that too-close branches can be damaged in storms and high winds from bonking into one another. Still another theory has to do with light. The behavior develops to help ensure that the leaves of a tree are not blocked by the shade of another tree’s leaves, thus getting an optimal chance for light.

Cool huh?

I am a Mature Adult™

Okay.

So this thing is incredibly educational and awesome.

But the immature side of me cannot stop laughing.

Fun fact: if you move the “tongue control” dial clockwise in the triangle, you get continuous “oohhhhhh yeeeeeahhh!”
Moving it counter clockwise get you continuous “IIIIIIIIII knoooooooow!”

Fan. Tastic.

 

TWSB: More on the Kilogram

So I have no idea how I’ve never found this podcast before since it’s about the kilogram, but I haven’t.

But now I have.
Enjoy.

(Hot damn, I love the kilogram.)

This Week’s (Month’s?) Science Blog: Sun Block

Yo.

So as you all know, I find the sun to be very awesome. Here’s a video of a guy demonstrating that despite the fact that the sun seems so huge in our sky a lot of the time, that hugeness is an illusion! The sun is, in fact, only about half a degree in size in our sky.

Supah cool.

TWSB: Hey, A Science Blog!

Hey you butt parties, check this out: a study published in the journal Chemical Senses suggests that there may be a sixth taste in addition to the five basic ones we all know (sweet, sour, salty, bitter, umami). What taste is it? Starch.

The study, run by Dr. Juyun Lim from OSU, involved approximately 100 participants across five different studies. The participants were asked to taste liquid solutions of carbohydrates—some simple (like sugar) and some complex—both under normal conditions and when the sweet receptors in their mouths were blocked. Even with the receptors blocked, the participants stated that they could still detect a starchy taste, which goes against previous assumptions that starch was tasteless.

Dr. Lim says that the result is not necessarily surprising; since humans use starch as a major source of energy, it makes sense that humans could be able to detect its presence by taste. If nothing else, the findings demonstrate that the way humans taste is actually more complex than previously thought. The way the participants tasted the starch, says Dr. Lim, was by tasting the saliva-destroyed version of the starch: glucose oligomers. While it was previously suggested that humans could only taste the simple sugars class of carbohydrates, the fact that participants could actually describe the taste of the glucose oligomers suggests that our tasting of carbs is more complicated than we think.

Others are a bit wary of classifying this as a new separate taste, suggesting that it might just be another “version” of the sweet taste. More research will be done on determining the exact mechanism of how the glucose oligomers are actually tasted.

Yikes

Dudes. This is simultaneously the coolest and creepiest thing I’ve seen in a while. Basically, Graham is a person constructed to survive a car accident, either as a passenger or as a pedestrian. His head/brain/skull, neck, chest, skin, knees, and feet have all been adjusted to be optimally protected in an accident. It’s really interesting to read the reasons behind the changes.

*breaks down your front door* HAVE YOU HEARD THE LATEST NEWS ABOUT THE KILOGRAM??

I’ve done a couple of posts about the kilogram, and if you’ve read any of them (or have done any reading about the SI units at all (‘cause that’s a common interest, right? (I mean, I can’t be the only one (…right?)))), you know that the kilogram is the only one of the basic seven measures that is still defined by a physical object rather than a calculation or constant.

Specifically, the mass of the kilogram is defined by an egg-sized alloy of platinum and iridium. This little dude sits beneath not one but three glass bell jars ion a climate-controlled, hermetically sealed room in Paris. Why? Because it’s the object that defines the kilogram, meaning that it is the benchmark against which all other kilograms are compared. So if it changes weight—due to dust or residue or moisture—the kilogram itself changes weight. In fact, it’s so important that the kilogram remains unchanged that it is only removed from its prison every 40 years in order to compare it to other similar replicas that are stored around the world.

These issues with the physical copy are the main reasons why scientists wish to define the kilogram with something that is an inherent standard in nature—like the speed of light or the wavelength of photons. For quite some time, physicists have been considering using the Planck constant as part of the definition of the kilogram. Specifically, the Planck constant could be used in conjunction with Einstein’s E = mc2 equation in a way that could determine mass solely through physical constants. However, no one has yet been able to actually measure the Planck constant to a level of precision that would surpass that of using the physical kilogram as the standard.

However, based on the current pace of progress, physicists suspect that they might be able to redefine the kilogram in terms of the Planck constant by as early as 2018, rendering Le Grand K, as the physical kilogram is known, obsolete.

Crazy, huh? Check out the article here!

TWSB: Blacker than the Blackest Black Times Infinity (Part II)

I did a post quite a while ago on super black material, but it looks like they’ve recently come up with something that’s even blacker.

Surrey NanoSystems, a British company, have improved their Vantablack material so that it absorbs more than 99.96% of the light that hit it—more than their original Vantablack, which had first been created in 2014. In fact, the new material absorbs so much light that scientists are unable to measure exactly how black the material is. You can shine a laser pointer onto it and the laser seems to disappear.

Vantablack is made by packing carbon nanotubes so tightly together that light can get in but can’t escape. Here’s a crumpled up piece of aluminum foil painted with Vantablack.

tumblr_o3ooytLwg01qzng72o1_540

Freaky, huh?

 

This Week’s Science Blog: Remember When I Used to do a Weekly Science Blog?

SUN NEWS!

According to research at the University of Warwick, the sun may have the potential to superflare. What’s a superflare? It’s supercool. Superflares are like solar flares, only thousands of times more powerful. According to the lead researcher at Warwick, Chloe Pugh, if the sun were to superflare, pretty much all of earth’s communications and energy systems could fail. Radio signals disabled, huge blackouts, all that fun stuff. But according to Pugh, the conditions needed for a superflare are extremely unlikely to occur on the sun.

But how did they actually figure out that it is possible for the sun to superflare? Using NASA’s Kepler space telescope, the researchers found a binary star, KIC9655129, which has been shown to superflare. The researchers suggest that due to the similarities between the sun’s solar flares and the superflares of KIC9655129, the underlying physics of both phenomena may be the same.

Cool!

SUUUUUN

The sun is amazing. This is amazing.

From the description: “NASA’s Solar Dynamics Observatory (SDO) keeps an eye on our nearest star 24/7. SDO captures images of the Sun in 10 different wavelengths, each of which helps highlight a different temperature of solar material. In this video we experience images of the Sun in unprecedented detail captured by SDO. Presented in ultra-high definition video (4K) the video presents the nuclear fire of our life-giving star in intimate detail, offering new perspective into our own relationships with grand forces of the solar system.”

YAY.

Also this.

I’ve never watched a full episode of Rick and Morty, but this particular scene may change that.